Starter Question

Poll: www.slido.com #TheDataDialogue

Have you ever:

- Worked with clinical data?
- Had clinical data recorded from you?
- Benefited from clinical data?
The processes and benefits of sharing clinical data

P. H. Charlton

Guy’s and St Thomas’ NHS Foundation Trust
King’s College London

Views my own http://peterhcharlton.github.io/RRest/

Poll: www.slido.com #TheDataDialogue
Respiratory Rate Estimation Project

Poll: www.slido.com #TheDataDialogue
An alternative approach

Poll: www.slido.com #TheDataDialogue
Estimating respiratory rate

Adapted from:

Aim

To assess the performance of algorithms to estimate respiratory rate from routinely monitored signals.

Poll: www.slido.com #TheDataDialogue
Secondary aims

Share ...

benchmark dataset
standardised implementations of algorithms

... for future research

Poll: www.slido.com #TheDataDialogue
Starter Question

Poll: www.slido.com #TheDataDialogue

Have you ever:

- Worked with clinical data?
- Had clinical data recorded from you?
- Benefited from clinical data?
The processes and benefits of sharing clinical data

“individually identifiable health information” [1]

patient care or a clinical trial [2]

Common law duty of confidentiality

Data Protection Act 1988 [3]
The processes and benefits of sharing clinical data
Processes
Setting up a clinical trial

• Is my study clinical research? ✗

If so, it must:

• Comply with the Declaration of Helsinki [1] ...

• ... by following Good Clinical Practice [2]
Setting up a clinical trial

• Is my study clinical research?

If so, it must:

• Comply with the Declaration of Helsinki [1] ...

• ... by following Good Clinical Practice [2]

This trial:

• changed patient care and generated generalisable findings

• was reviewed by ethics committee

• required informed consent and publication of trial design

• did not disclose participants’ identities
Preparation to share data

1. Plan in funding applications [3]

2. Plan to ask subjects for consent
 • Include details in the information sheet
 • Statement on consent form

 (Consent may not always be required: ✗)
Clinical trial data must usually be de-identified before sharing: [7]

- It must not identify an individual
- There must be no reasonable basis to believe it can be used to identify an individual (multiple datasets?)

“The data holder is ultimately responsible for ethical and legal obligations” [4]
Clinical trial data must usually be de-identified before sharing: [7]

- It must not identify an individual
- There must be no reasonable basis to believe it can be used to identify an individual (multiple datasets?)

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Expert Determination</th>
<th>Safe Harbor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apply statistical or scientific principles</td>
<td>Removal of 18 types of identifiers</td>
</tr>
<tr>
<td>Result</td>
<td>Very small risk that anticipated recipient could identify individual</td>
<td>No actual knowledge residual information can identify individual</td>
</tr>
</tbody>
</table>

Adapted from [7]
De-identification

Clinical trial data must usually be de-identified before sharing: [7]

- It must not identify an individual
- There must be no reasonable basis to believe it can be used to identify an individual (multiple datasets?)

e.g. names, dates (inc. age)

<table>
<thead>
<tr>
<th></th>
<th>Expert Determination</th>
<th>Safe Harbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methodology</td>
<td>Apply statistical or scientific principles</td>
<td>Removal of 18 types of identifiers</td>
</tr>
<tr>
<td>Result</td>
<td>Very small risk that anticipated recipient could identify individual</td>
<td>No actual knowledge residual information can identify individual</td>
</tr>
</tbody>
</table>

Adapted from: [7]
De-identification

Clinical trial data must usually be de-identified before sharing: [7]

- It must not identify an individual
- There must be no reasonable basis to believe it can be used to identify an individual (multiple datasets?)

“it is not possible to ensure that the probability of re-identification is zero” [8]
De-identification

Data collection:

- Subject key

<table>
<thead>
<tr>
<th>Subject ID</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRest001</td>
<td>Mark Antony</td>
</tr>
<tr>
<td>RRest002</td>
<td>Marcus Brutus</td>
</tr>
<tr>
<td>RRest003</td>
<td>Julius Caesar</td>
</tr>
<tr>
<td>RRest004</td>
<td>Octavius Caesar</td>
</tr>
</tbody>
</table>

- Filenames

 RRest001_finger_probe.csv

 RRest001_heart_monitor.csv

 RRest001_demographics.csv
De-identification

Subj: RRest001 Gender: Female Age: 99

reference 1

reference 2

heart monitor

finger probe

Time [HH:MM:SS]
De-identification

Pseudonymous

Subj: RRest001 Gender: Female Age: 99

Reference 1

Reference 2

Heart Monitor

Finger Probe

Dates Time [HH:MM:SS]
De-identification

Subject: anon
Gender: Female
Age: Elderly

Reference 1

Reference 2

Heart monitor

Finger probe

Elapsed Time [s]
Data preparation

Data prepared for analysis:

• to reduce workload and domain-specific knowledge requirements
• whilst retaining all potentially useful information (usually not raw data \[9\])
Data preparation

Data prepared for analysis:

- to reduce workload and domain-specific knowledge requirements
- whilst retaining all potentially useful information (usually not raw data)[9]

This trial:

- re-format

\begin{verbatim}
Milliseconds since 01.01.1970; SpO2-O2(%); Perf-REL(-); Pulse-Pulse (bpm); NBP-MEAN (mmHg); RR-RR (rpm); NBP-SYS (mmHg); NBP-DIA (mmHg); PVC-CNT (bpm)
4102444800000;;;56;;18;;;0
4102444801025;98.6;2.1;57;;18;;;0
4102444802050;98.4;2.0;58;;18;;;0
4102444803075;98.2;2.0;57;;18;;;0
4102444804100;98.3;2.0;56;;18;;;0
4102444805125;98.2;1.9;56;;19;;0
\end{verbatim}
Data preparation

Data prepared for analysis:

• to reduce workload and domain-specific knowledge requirements
• whilst retaining all potentially useful information

This trial:

• re-format
• time-alignment
Data preparation

Data prepared for analysis:

- to reduce workload and domain-specific knowledge requirements
- whilst retaining all potentially useful information

This trial:

- re-format
- time-alignment
- extraction of relevant periods

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>10 min</td>
</tr>
<tr>
<td>Walk</td>
<td>2 min</td>
</tr>
<tr>
<td>Run</td>
<td>~ 5 min</td>
</tr>
<tr>
<td>Recover</td>
<td>10 min</td>
</tr>
</tbody>
</table>
Sharing data

Method: [5],[8]

Level of security

Open Access

-------- Controlled Access --------

Probability of re-identification

Publicly available

Terms of Use

Data Analysis Plan

Full Contract
The following should be shared: \cite{[6]}

- Analytic Dataset
- Metadata
- Protocol
- Study Analysis Plan
- Analysis code
Sharing data

This trial:

- **Data**: Open access, accessible format
- **Algorithms**: GitHub repository
Additional Materials

- User Manual
 - updated as Qs arise

A Toolbox of Respiratory Rate Algorithms

This page provides an overview of RRest, a toolbox of respiratory rate algorithms. Further information is available from the pages listed on the right hand side.

1. What is RRest?
2. What does RRest do?
3. Why is RRest helpful?
4. How is RRest designed?
5. How can I find out more?
6. How can I contribute to RRest?
7. What does RRest not do?

What is RRest?

RRest is a toolbox of algorithms for estimation of respiratory rate from physiological signals. It is written in Matlab format and contains a wide range of algorithms previously reported in the literature. It is part of a larger project called the Respiratory Rate Estimation project. The project contains additional material such as data to use with the algorithms, publications arising from the project, and details of how to make contributions.

What does RRest do?

RRest estimates respiratory rate from windows of electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. It also estimates a reference respiratory rate from a simultaneous respiratory signal, such as an Impedance Pneumography signal.

Why is RRest helpful?

RRest is a helpful resource for researchers in the field of respiratory rate estimation. It provides a set of RR algorithms for use with the ECG and PPG. This is helpful for:
Additional Materials

- User Manual
 - updated as Qs arise

- Tutorial

Adapted from: [1]
Additional Materials

• User Manual
 – updated as Qs arise

• Tutorial

• Instructions for replicating analyses

Replicating this Publication

The work presented in this case study can be replicated as follows:

• Download data from the MIMIC II dataset using the script provided here.
• Use Version 1 of the toolbox of algorithms. To perform the analysis call the main script using the following command: $RRest('mimicii')$
Compatibility

- Other datasets take a variety of formats
- They can be imported using the scripts provided
Benefits
This project

• Transparency
• Reproducibility
• Internal peer review
• Ongoing peer review
• Required by some journals \cite{14} and funding providers
Future benefits

- Build on our work
- More accessible to non-specialists
- Multiple dataset studies
- Promoting collaboration
- Increase speed of research
- New research questions
- Decreased burden on research subjects
- Education of students
Conclusions

- Considered the processes for collection and sharing of clinical trial data, using the Respiratory Rate Estimation project as a case study.
- Looked briefly at the benefits of sharing clinical data
- Links are provided to references and additional resources

This presentation is part of the **Respiratory Rate Estimation Project** at:

http://peterhcharlton.github.io/RRest/
The views expressed are those of the author and not necessarily those of Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, the EPSRC, NHS, NIHR, Department of Health, Wellcome Trust, or Royal Academy of Engineering.
Additional Acknowledgments

Thanks also to:

- Jason Long for Cayman Theme which inspired this presentation template
- Open Clipart for some of the images in this presentation
Additional details of the Vortal Study, which formed part of the case study in this presentation, are available in the following publication:

References

Foundational principles for clinical research

A standard for ensuring the ethical quality of trials involving human subjects. Consistent with the principles in the Declaration of Helsinki.

Helpful ‘how to’ for managing and sharing data, including: writing a data management and sharing plan (p.6)

Recommends data anonymisation and controlled access to shared data, with suggestions of practical methods for each process.

Helpful advice on sharing data from clinical trials, including: data sharing models (p.9); handling data requests (p.13); text for use in a consent form (p.16); an example Data Use Agreement (p.22).

Essential reading – perhaps the most useful resource to date on sharing clinical trial data.

Detailed guidance on exactly how to de-identify data. A helpful introduction is provided in [4].

Emam, K. El _et al._, 2015. Anonymising and sharing individual patient data. _The BMJ_, 350, p.h1139. DOI: [10.1136/bmj.h1139](https://doi.org/10.1136/bmj.h1139)

Brief overview of “key concepts and principles for anonymising health data while ensuring it remains suitable for meaningful analysis”.

A commentary by the Chair of the committee who contributed to the report in [6]. Considers the question of whether to share raw data.
References

Additional Resources
Is my study clinical research?

A study is clinical research if it involves:

• Randomised treatments, or
• Changing treatment / patient care from accepted standards, or
• Generalisable findings

For further information, and to check whether your study is classed as clinical research, see the tool at:

http://www.hra-decisiontools.org.uk/research/
Obtaining consent to share data

Include information in the patient information sheet, and a statement in the informed consent form, such as the following text (as suggested by the Health Research Authority):

“I understand that the information collected about me will be used to support other research in the future, and may be shared anonymously with other researchers.”

These details are taken from [5], p.16
Is consent required?

"The best way ... is to obtain consent" [5]

"A lack of consent for sharing should not prohibit sharing ... anonymised data" [5]

"Many jurisdictions ... do not designate anonymised health data as personal information. Therefore, such data would no longer be covered by privacy laws." [8]

"Sharing of data without specific participant consent may be ethically acceptable and legally permitted in certain instances." [6]

Usually anonymisation is a must. Even then, check with local authorities (e.g. Healthcare provider, Ethics Committee)
Is consent required? A case study

The International Stroke Trial Database reported in did not require consent specifically for data sharing:

When creating this database, “consent for publication of raw data was not obtained from participants”. Whilst consent for participation in the trial was obtained, the patients “were treated 15-20 years ago, and many have died. The dataset is fully anonymous ... In our view, publication of the dataset clearly presents no material risk to confidentiality of study participants.” [15]
How to share data

The UK Data Archive have suggested several ways of sharing data [3]:

- Data repository
- Supplementary material in a journal publication
- Institutional repository
- Project or institutional website
- Informal sharing with peers

For further details see p.4 of [3]
Benefits of sharing data

Several benefits of sharing clinical data are mentioned in the literature, such as:

• Providing new insights [10]
• Clarifying the effectiveness and safety of medicines [10]
• Preventing repetition of data collection and research [10]
• Improving transparency [10]
• Improving public trust in research [10]
• Improved meta-analyses [11]
• Real-world examples for teaching [11]
• Speed up innovation [12]
• Reward risk of trial participants [13]

Several concerns are also mentioned in the literature, such as:

• Potential for misleading analyses of trial data [10]
• De-identification of trial participants [10]